Wednesday: 06 August, 2016

Y

Oracle Insert Statements
for DBAs and Developers

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

I

Introduction

\\\\\\\’

Dan Morgan

* Principal Adviser: Forsythe Meta7
Oracle ACE Director

= More than 45 years technology experience
= First computer was an IBM 360/40 mainframe in 1970
= Fortran IV and Punch Cards

ﬁf Curriculum author and primary Oracle instructor at University of Washington
% Guest lecturer on Oracle at Harvard University
» Decades of hands-on SQL, PL/SQL, and DBA experience

= The "Morgan" behind Morgan's Library on the web
wWWww .morganslibrary.orqg

= 10g, 11g, and 12c Beta tester
= Co-Founder Intl. GoldenGate Oracle Users Group
= Contact email: dmorgan@forsythe.com

My Websites: Morgan's Library

Resources
I
HowCan1?

:

L Notics & Teems of

MadDog Morgan

‘QO)ACLE -

Morgan®s Library

International Oracle Events 2015-2016 Calendar
Jun Jul Aug Sep

w9 library

Oct Nov Dec an

The library is a spam-free on-line resource with code demos for DBAs and Developers.
If you would like to see new Oracle database funtionality added to the library ... just email us.
Oracle 12.1.0.2.0 has been released and new features will be showing up for many weeks.

The first updates have already been made.

. E;oug, Chicaqgo, lllinois - Mar 10

o "™ uTOUG, Salt Lake City, Utah - Mar 11.12

* {5 QUGH, Oslo, Norway - Mar 12:14
Collaborate, Las as, Nevada - Apr 12-16

o ™ nYoUuG, Now York, NY - May 18

« " e 10 - -2

Next Event: 27 January, Redwood Shores, CA

® Join the Western Washington OUG

® Morgan's Oracle Podcast

* US Govt Mil._STIGs (Security Checklists)
. B Liewellyn's PL/SQL White Pa

. 0 X

aboard USA-71

ACE Director

® Explain Plan White Pa

e "*

”} AEDECINT SANS FRONTMRES
DOCTORS WITHOUT BORDERS

Training Events and Travels Oracle Events

Click on the map to find an event near you

ACE News
@ Would you like to become an Oracle ACE? &

Learn more about becoming an ACE

® ACE Directory
® ACE Gooqle Map
® ACE Program
® Stanley’s Blog

Congratulations to our newest
ACE Director Jim Czuprynski

www.morganslibrary.org

\\\\\\\’

Zero Downtime Database

i' | Migrations with GoldenGate

—

- -
i 3 : -. e e RS TR ;
. i g th:@wlw]gyy_l*_;, B LT WO seiis
S = i e S CRE R
T R s o T eSS i '
e e o B Y oA SRR ‘ '
— LR .- R T T L E ;. o dgy ™ "
- - S

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
- :,‘ | skype: damorganllg

WL twitter: @meta7solutions

N

(13
&
<

How Do You

ASE

Datal

the

N

W]
4 -
£

I n

.
»
'

e

Ins

11 M9
Al

-

:
.
IO i1

7

’
:

ber Threats

'\
'

)
:

C

Aga

Daniel A. Mo

wed Saud
o =
!‘IT .'Avll
- - .
= e
o
. |
““— - -
J
. i
—) A=
o
~ !
’ - -
s Bl
')
3

o
22
S.o

.S
o= &
=

(o

§OS
9%0

s
—
Onm +
-
e
o
o £

skype: damorganllg
twitter: @meta7solutions

k= “VLDBs and
7 Database .

h Partltlgplﬁg

A

| A. Morgan
all: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg
twitter: @meta7zsolutions

tabase Periormance

o-‘q

gan
BRE@TOrSythe.com
206 669-2949

amo cnllg

sOlutionss

;

-

)

.IT Fire Flghtln

“Qﬁ-

L

....

3

™

<'
~

9 =

>

Oracle DBaaS Migration Road

\‘
\
\
\
\

Travel Log: 2010 - Lima Peru

\\\\\\\’

=
=

Travel Log: 2013 - Beljing China

TR

" EARRuEns] :

\\\\\\\’

=
N

Travel Log: 2014 - Galapagos Islands Ecuador

~

13

Content Density Warning

Take Notes ... Ask Questions

\\\\\\\’

[EEN
IS

Why Am | Focusing On INSERT Statements?

Because no one else is

Because Oracle University doesn't teach this material

Because there are 17 pages in the 12c docs on INSERT statements
Because almost no one knows the full syntax for basic DML statements

Because we have now spent more than 30 years talking about performance
tuning and yet the number one conference and training topic remains tuning
which proves that we need to stop focusing on edge cases and focus, instead,
on the basics

Because explain plans, AWR Reports, and trace files will never fix a problem if
you don't know the full range of syntaxes available

Because the best way to achieve high performance is to choose techniques
that reduce resource utilization

\\\\\\\’

=
a1

Insert Statements

\\\\\\\’

SQL DML

= DML stands for Data Manipulation Language

= DML is a direct reference to the following SQL statements
= INSERT
= UPDATE
= DELETE
= MERGE

\\\\\\\’

=
~

SQL INSERT Statement Topics

= Basic Insert

= INSERT WHEN

= INSERT ALL

= INSERT ALL WHEN

= INSERT FIRST WHEN

= INSERT INTO ASELECT STATEMENT
= INSERT WITH CHECK OPTION

= View Inserts

= Editioning View Inserts

= Partitioned Table Insert

= Tables with Virtual Columns Insert
= Tables with Hidden Columns Insert
= Create Table As Inserts

= Nested Table Inserts

= VARRAY Table Inserts

= MERGE Statement Insert

\\\\\\\’

=
(oe]

PL/SQL INSERT Statement Topics

* Record inserts

» FORALL INSERTs

* FORALL MERGE Inserts

= LOB Inserts

= DBMS_SQL Dynamic Inserts

= Native Dynamic SQL Inserts

* RETURNING Clause with a Sequence

* RETURNING Clause with an Identity Column

\\\\\\\’

=
©

Performance Tuning INSERT Statement Topics

* Too Many Columns

= Column Ordering

= Aliasing and Fully Qualified Names
= Implicit Casts

= APPEND hint

= APPEND _ VALUES hint

= DBMS ERRLOG built-in package
= CHANGE DUPKEY ERROR INDEX hint
= IGNORE ON DUPKEY INDEX hint

= DBMS STATS
» |nsert Statement Most Common Error

\\\\\\\’

N
o

Part 1. SQL Insert Statements

\\\\\\\’

Basic INSERT Statement .

= Use this syntax to perform inserts into a single column in a heap, global

temporary, IOT, and most partitioned tables

INSERT INTO <table name>
(<column name>)

VALUES

(<value>) ;

CREATE TABLE state (
state abbrev VARCHAR2(2)) ;

INSERT INTO state
(state_abbrev)
VALUES

('NY') ;

COMMIT;

SELECT * FROM state;

\\\\\\\’

N
N

Basic INSERT Statement ¢

= Use this syntax to perform inserts into a single column in a heap, global
temporary, IOT, and most partitioned tables

INSERT INTO <table name>

(<column name>, <column name> [,...])
VALUES

(<value>, <value> [,<value>]) ;

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state name VARCHAR2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('"NY', 'New York');
COMMIT;

SELECT * FROM state;

\\\\\\\’

N
w

INSERT WHEN and INSERT ALL WHEN

» Use this syntax to conditionally insert rows into multiple tables

INSERT

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

ELSE
INTO <table name> (<column_list>)
VALUES (<values_list>)

SELECT <column_list> FROM <table name>;

INSERT ALL

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

ELSE
INTO <table name> (<column_list>)
VALUES (<values_list>)

SELECT <column_list> FROM <table name>;

INSERT

WHEN (deptno=10) THEN
INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=30) THEN
INTO emp 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

ELSE
INTO leftover (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

SELECT * FROM emp;

INSERT ALL

WHEN (location < 6) THEN
INTO hq _employee (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (term_date IS NOT NULL) THEN
INTO current emp (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal, deptno)

WHEN (rehire = 1) THEN
INTO rehires (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

ELSE
INTO other emps (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

SELECT * FROM emp;

i

N
I

INSERT ALL

= Use this syntax to unconditionally insert data into multiple tables
= Note that columns can go into one target table, multiple target tables, or all

target tables

INSERT ALL
INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT ALL
INTO ap_cust VALUES (customer_id, program id, delivered date)
INTO ap_orders VALUES (order_date, program id)
SELECT program id, delivered date, customer_ id, order_ date
FROM airplanes;

\\\\\\\’

N
a1

INSERT FIRST WHEN
With "FIRST" the database evaluates each WHEN clause in the order in which

It appears in the statement and only performs an insert for the first match

INSERT FIRST

WHEN <condition> THEN

INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT FIRST
WHEN customer id < 'I' THEN

INTO cust_ah

VALUES (customer_ id, program id, delivered date)
WHEN customer_ id < 'Q' THEN

INTO cust_ip

VALUES (customer id, program id, delivered date)
WHEN customer id > 'PZZZ' THEN

INTO cust_qgz

VALUES (customer id, program id, delivered date)
SELECT program id, delivered date, customer_ id, order date
FROM airplanes;

\\\\\\\’

N
»

INSERT Into a SELECT Statement

» Use this syntax to INSERT rows into a table a part of a SELECT statement
from itself or one or more different tables

INSERT INTO (
<SELECT Statement>)
VALUES (value list);

CREATE TABLE dept (

dept no NUMBER (3) NOT NULL,
dept name VARCHARZ2 (2) NOT NULL,
dept loc VARCHAR2(30));

INSERT INTO (
SELECT dept no, dept name, dept loc
FROM dept)

VALUES (99, 'TRAVEL', 'SEATTLE');

\\\\\\\’

N
~

INSERT with Check Option
» Use this syntax to limit inserted rows to only those that pass CHECK OPTION

validation

INSERT INTO (
<SELECT_ statement> WITH CHECK OPTION)
VALUES (value list);

CREATE TABLE dept (

dept no NUMBER (3) NOT NULL,
dept name VARCHARZ2 (2) NOT NULL,
dept loc VARCHAR2(30));

INSERT INTO (
SELECT dept no, dept name, dept loc
FROM dept
WHERE deptno < 30 WITH CHECK OPTION)
VALUES (99, 'TRAVEL', 'SEATTLE');

\\\\\\\’

N
(oe]

INSERTINng into a View

= Evaluate whether a view column is insertable

= Views with aggregations, CONNECT BY, and other syntaxes may not be

Insertable

desc cdb_updatable columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT (*)
FROM cdb_updatable columns cuc
WHERE (cuc.con_id, cuc.owner, cuc.table name) IN
(SELECT cv.con_id, cv.owner, cv.view_name
FROM cdb_views cv)
GROUP BY cuc.con_id, cuc.owner, cuc.insertable
ORDER BY 1,2,3;

CON_ID OWNER INS COUNT (*)
2 ORDSYS NO 4
2 ORDSYS YES 4
2 SYS NO 45190
2 SYS YES 22415
2 SYSTEM NO 172
2 SYSTEM YES 14
2 WMSYS NO 736
2 WMSYS YES 160

\\\\\\\’

N
(o]

INSERTINng into an Editioning View

= All editioning views are insertable ... but be sure you are in the correct edition

SQL> CREATE EDITION demo_ed;

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT program id, line number
3 FROM airplanes;

View created.

SQL> ALTER SESSION SET EDITION=demo_ed;

Session altered.

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT line number, program id
3 FROM airplanes;

View created.

SQL> SELECT * FROM user_ editioning views_ae;

VIEW_NAME TABLE NAME EDITION_ NAME
TEST AIRPLANES ORASBASE
TEST AIRPLANES DEMO_ED

\\\\\\\’

w
o

INSERTINng into a Partitioned Table

= With HASH, LIST, and RANGE partitioning any INSERT statement will work
= With Partition by SYSTEM you must name the partition

CREATE TABLE syst part (
tx_id NUMBER(5),
begdate DATE)

PARTITION BY SYSTEM (
PARTITION pl1,

PARTITION p2,

PARTITION p3) ;

INSERT INTO syst part VALUES (1, SYSDATE-10);
*
ERROR at line 1:
ORA-14701: partition-extended name or bind variable must be used
for DMLs on tables partitioned by the System method
INSERT INTO syst part PARTITION (pl) VALUES (1, SYSDATE-10);
INSERT INTO syst part PARTITION (p2) VALUES (2, SYSDATE);
INSERT INTO syst part PARTITION (p3) VALUES (3, SYSDATE+10);

SELECT * FROM syst part PARTITION (p2);

\\\\\\\’

w
=

INSERTINng into a Table With Virtual Columns

» Virtual columns will appear in a DESCRIBE statement but

VvOuU cannot insert values into them

CREATE TABLE vcol (

salary NUMBER (8) ,

bonus NUMBER (3) ,

total comp NUMBER(10) AS (salary+bonus)) ;

desc vcol

SELECT column_id, column_name, virtual column
FROM user_ tab_cols
WHERE table name = 'VCOL'

INSERT INTO vcol

(salary, bonus, total comp)
VALUES

(1,2,3);

INSERT INTO vcol
(salary, bonus)
VALUES

(1,2);

SELECT * FROM vcol;

\\\\\\\’

w
N

INSERTINng into a Table with Invisible Columns

» Invisible columns will not appear in a DESCRIBE statement but you can insert
Into them directly

CREATE TABLE vis (
rid NUMBER,
testcol VARCHAR2 (20)) ;

CREATE TABLE invis (
rid NUMBER,
testcol VARCHAR2 (20) INVISIBLE) ;

desc vis

desc invis

SELECT table name, column name, hidden_column

FROM user_ tab cols -- not found in user_ tab_columns
WHERE table name like '%VIS';

INSERT INTO invis

(rid, testcol)

VALUES

(1, 'TEST');

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

\\\\\\\’

w
w

CREATE TABLE as an INSERT Statement

= Use this syntax to create a new table as the result of a SELECT statement
from one or more source tables

CREATE TABLE <table name> AS
<SELECT Statement>;

CREATE TABLE column_subset AS
SELECT coll, col3, col5
FROM servers;

desc column_subset

SELECT COUNT (*)
FROM column_ subset;

\\\\\\\’

w
N

Nested Table Insert

= Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourselList AS TABLE OF VARCHAR2 (64) ;
/

CREATE TABLE department (

name VARCHAR2 (20) ,

director VARCHAR2 (20),

office VARCHAR2 (20) ,

courses Courselist)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department
(name, director, office, courses)
VALUES
('English', 'Tara Havemeyer',6 'Breakstone Hall 205', Courselist(
'Expository Writing',
'Film and Literature'’',
'Modern Science Fiction',
'Discursive Writing',
'Modern English Grammar',
'Introduction to Shakespeare',
'Modern Drama',
'The Short Story',
'The American Novel')) ;

\\\\\\\’

w
o1

VARRAY Table Insert

= Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY (50) OF Project;
/

CREATE TABLE department (
dept id NUMBER(2),

dname VARCHAR2 (15) ,
budget NUMBER (11,2),
projects Projectlist) ;

INSERT INTO department

(dept_id, dname, budget, projects)

VALUES

(30, 'Accounting', 1205700,

ProjectList (Project(l, 'Design New Expense Report', 3250),
Project (2, 'Outsource Payroll',6 12350),

Project (3, 'Evaluate Merger Proposal', 2750),

Project (4, 'Audit Accounts Payable',6 1425)));

\\\\\\\’

w
»

MERGE Statement Insert

= Use MERGE statements where an insert or other DML action is conditioned
on the results of a SELECT statement result match

MERGE INTO bonuses b
USING (
SELECT employee id, salary, dept no
FROM employee
WHERE dept no =20) e
ON (b.employee id = e.employee id)
WHEN MATCHED THEN
UPDATE SET b.bonus = e.salary * 0.1
DELETE WHERE (e.salary < 40000)
WHEN NOT MATCHED THEN
INSERT (b.employee id, b.bonus)
VALUES (e.employee id, e.salary * 0.05)
WHERE (e.salary > 40000) ;

\\\\\\\’

w
~

Part 2: PL/SQL Insert Statements

\\\\\\\’

Cursor Loops: One Row At A Time

= |f you want to make insert statements as slow as possible ... do them one row
at a time. Make each insert statement find a block into which it can be inserted

and then check everything sequentially

CREATE TABLE parent (
part num NUMBER,
part_name VARCHAR2 (15)) ;

CREATE TABLE child AS
SELECT *
FROM parent;

CREATE OR REPLACE PROCEDURE slow_way AUTHID CURRENT USER IS

BEGIN

FOR r IN (SELECT * FROM parent) LOOP

-- modify record values

r.part num := r.part num * 10;

-- store results
INSERT INTO child
VALUES
(r.part num, r.part name) ;
END LOOP;
COMMIT;
END slow_way;
/

\\\\\\\’

w
©

Record Inserts

» Use this syntax to insert based on an array that matches the target table

rather than named individual columns

Adding a new column to the table will not break the statement

CREATE TABLE t AS
SELECT table_name, tablespace_name
FROM all_ tables;

SELECT COUNT (*)
FROM t;

DECLARE
trec t%ROWTYPE;

BEGIN
trec.table name := 'NEW';
trec.tablespace name := 'NEW_TBSP';

INSERT INTO t
VALUES trec;

COMMIT;
END;
/

SELECT COUNT (*) FROM t;

\\\\\\\’

N
o

FORALL INSERTS a3

» Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop

Learn

Limits Clause

Save Exceptions
Partial Collections
Sparse Collections
In Indices Of Clause

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS

TYPE myarray IS TABLE OF parent3%ROWTYPE;
1 data myarray;

CURSOR r IS
SELECT part _num, part name
FROM parent;

BatchSize CONSTANT POSITIVE := 1000;

BEGIN

OPEN r;
LOOP
FETCH r BULK COLLECT INTO 1 data LIMIT BatchSize;

FOR j IN 1 .. 1 data.COUNT LOOP
1l data(j) .part num := 1 data(]j) .part num * 10;
END LOOP;

FORALL i IN 1..1 data.COUNT
INSERT INTO child VALUES 1 data(i);

EXIT WHEN 1 data.COUNT < BatchSize;
END LOOP;
COMMIT;
CLOSE «r;

END fast way;

/

\\\\\\\’

N
=

FORALL INSERTS ¢35

» Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop

Learn

Limits Clause

Save Exceptions
Partial Collections
Sparse Collections
In Indices Of Clause

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE PartNum IS TABLE OF parent.part num$TYPE
INDEX BY BINARY INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part name$TYPE
INDEX BY BINARY INTEGER;

pnam_t PartName;

BEGIN
SELECT part_num, part name
BULK COLLECT INTO pnum t, pnam t
FROM parent;

FOR i IN pnum t.FIRST .. pnum_t.LAST LOOP
pnum_t (i) := pnum t(i) * 10;
END LOOP;

FORALL i IN pnum t.FIRST .. pnum_t.LAST
INSERT INTO child
(part_num, part name)
VALUES
(pnum_t (i), pnam t(i));
COMMIT ;
END fast way;
/

\\\\\\\’

N
N

FORALL INSERTS g3

Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert

500,000 rows per second on
my laptop

Learn

= Limits Clause

= Save Exceptions

= Partial Collections

= Sparse Collections

= |n Indices Of Clause

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE parent rec IS RECORD (

part num dbms_sql.number table,

part_name dbms_sql.varchar2 table) ;

p_rec parent_ rec;

CURSOR c IS
SELECT part num, part name FROM parent;

1 done BOOLEAN;
BEGIN
OPEN c;
LOOP
FETCH c BULK COLLECT INTO p rec.part num, p rec.part name
LIMIT 500;
1l done := c%NOTFOUND;

FOR i IN 1 .. p _rec.part num.COUNT LOOP
p_rec.part num(i) := p rec.part num(i) * 10;
END LOOP;

FORALL i IN 1 .. p rec.part num.COUNT
INSERT INTO child

(part_num, part name)

VALUES

(p_rec.part num(i) , p_rec.part name(i));

EXIT WHEN (1_done);
END LOOP;
COMMIT;
CLOSE c;
END fast way;
/

\\\\\\\‘

43

FORALL MERGE Inserts

= Use this syntax to execute a MERGE statement using data in an array data
(most likely selected using BULK COLLECT)

CREATE OR REPLACE PROCEDURE forall_merge AUTHID CURRENT USER IS
TYPE ridVal IS TABLE OF forall_tgt.rid%TYPE

INDEX BY BINARY INTEGER;

1l data ridval;
BEGIN

SELECT rid BULK COLLECT INTO l_data

FROM forall src;

FORALL i IN 1 data.FIRST .. 1 data.LAST
MERGE INTO forall tgt ft
USING (

SELECT rid

FROM forall src fs

WHERE fs.rid = 1 data(i)) al
ON (al.rid = ft.rid)
WHEN MATCHED THEN

UPDATE SET upd = 'U'
WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (1 _data(i), 'I', NULL);

COMMIT;
END forall merge;
/

\\\\\\\’

N
i

LOB Insert

= \When creating LOB objects be
sure to use SecureFiles and be
sure that you understand
PCTVERSION, CHUNK, and
other storage parameters

» Failure to understand how
LOBs process undo can result
IN massive waste of space

DECLARE

src_file BFILE;

dst file BLOB;

lgh file BINARY INTEGER;
retval VARCHAR2 (30) ;

BEGIN

src_file := bfilename ('CTEMP', 'sphere.mpg')

INSERT INTO sct

(rid, bcol)

VALUES

(1, EMPTY BLOB())

RETURNING bcol INTO dst_file;

SELECT bcol
INTO dst_file
FROM sct
WHERE rid =1
FOR UPDATE;

dbms lob.fileopen(src_file, dbms lob.file readonly)

lgh file := dbms_lob.getlength(src_file);

dbms lob.loadFromFile(dst file, src_file, 1lgh file);

UPDATE sct
SET bcol = dst_file
WHERE rid = 1;

dbms lob.setContentType (dst_file, 'MPG Movie');
retval := dbms_lob.getContentType (dst file);
dbms output.put line(retval);

dbms lob.fileclose(src_file);

END load file;

/

\\\\\\\’

N
(6)]

DBMS_ SQL Dynamic Inserts

= DBMS_SQL is the legacy implementation of dynamic SQL in the Oracle

database introduced in version 7

CREATE OR REPLACE PROCEDURE single row_insert(cl NUMBER, c2 NUMBER, r OUT NUMBER) IS

c NUMBER;
n NUMBER;
BEGIN
c := dbms_sql.open_cursor;
dbms_sql.parse(c, 'INSERT INTO tab VALUES (:bndl, :bnd2) ' || 'RETURNING cl*c2 into :bnd3',

dbms_sql.bind variable(c, 'bndl', cl);
dbms_sql.bind variable(c, 'bnd2', c2);
dbms_sql.bind variable(c, 'bnd3', r);

n := dbms_sql.execute(c) ;

dbms_sql.variable value(c, 'bnd3', r); -- get value of outbind
dbms _sql.close_cursor(c);
END single row_insert;

/

2);

\\\\\\\’

N
o

Native Dynamic SQL Inserts

= Native Dynamic SQL has largely replaced DBMS_SQL as it is robust and
more easily coded

BEGIN
FOR i IN 1 .. 10000
LOOP
EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'
USING i;
END LOOP;
END ;
/

\\\\\\\’

N
\‘

RETURNING Clause with a Sequence

» Use this syntax to return values from an insert statement unknown to the
program inserting the row

INSERT INTO <table_name>
(column list)
VALUES
(values_list)
RETURNING <value_ name>
INTO <variable name>;

DECLARE
X emp.empno3TYPE;
r rowid;
BEGIN
INSERT INTO emp
(empno, ename)
VALUES
(seq_emp.NEXTVAL, 'Morgan')
RETURNING rowid, empno
INTO r, x;

dbms_output.put line(r);
dbms_output.put line (x);
END ;
/

\\\\\\\’

N
oo

RETURNING Clause with an Identify Column

» Use this syntax to return values from an insert statement unknown to the
program inserting the row

CREATE TABLE idcoltab (
rec_id NUMBER GENERATED ALWAYS AS IDENTITY,
coltxt VARCHAR2 (30)) ;

DECLARE
rid idcoltab.rec id%TYPE;
BEGIN
INSERT INTO idcoltab
(coltxt)
VALUES
('Morgan')
RETURNING rec_id
INTO rid;

dbms output.put line(rid);
END ;
/

\\\\\\\’

N
©

RETURNING Clause with Native Dynamic SQL

= Use this syntax to return values from an insert statement created using Native

Dynamic SQL

DECLARE

sql_stmt VARCHAR2 (128);

dno dept ret.deptno%TYPE;
BEGIN

sql stmt := 'INSERT INTO dept ret (deptno, dname, location) '

'VALUES (seq.NEXTVAL, ''PERSONNEL'', ''SEATTLE'') '

'RETURNING deptno INTO :retval';
EXECUTE IMMEDIATE sql_stmt RETURNING INTO dno;
dbms output.put line (TO_CHAR(dno)) ;
END;
/

\\\\\\\’

a1
o

Performance Tuning Insert Statements

\\\\\\\’

Considerations

= Table structure
= |ndexes
= Triggers

= [tis always more efficient if you code it right once rather than making the
database fix it thousands or millions of times

\\\\\\\’

a1
N

Too Many Columns

Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

The maximum number of real table columns is 255

Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

A 1,000 column table is actually four segments joined together behind the
scenes just as a partitioned table appears to be a single segment but isn't

Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

Think vertically not horizontally

Be very suspicious of any table with column names in the form "SPARE1",
"SPARE2", "..."

The more columns a table has the more cpu is required when accessing

columns to the right (as the table is displayed in a SELECT * query ... or at the bottom if the table is
displayed by a DESCribe)

\\\\\\\’

a1
w

Column Ordering a)

= Computers are not humans and tables are not paper forms

= CBO's column retrieval cost
» Qracle stores columns in variable length format
= Each row is parsed in order to retrieve one or more columns

» Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not
» These tables will be accessed by person_id or state: No one will ever put the
address2 column into the WHERE clause as a filter ... they won't filter on
middle initial either

Common Design Optimized Design

CREATE TABLE customers (CREATE TABLE customers (

person_id NUMBER, person_id NUMBER,

first name VARCHARZ2(30) NOT NULL, last_name VARCHAR2 (30) NOT NULL,

middle init VARCHAR2(2), state VARCHAR2 (2) NOT NULL,

last name VARCHAR2 (30) NOT NULL, city VARCHAR2 (30) NOT NULL,

addressl VARCHAR2 (30) , first name VARCHAR2(30) NOT NULL,

address2 VARCHAR2 (30) , addressl VARCHAR2 (30) ,

city VARCHAR2 (30) , address2 VARCHAR2 (30) ,

state VARCHAR2 (2)) ; middle_init VARCHAR2(2));

\\\\\\\’

(6]
i

Column Ordering e

= Proof column order matters

CREATE TABLE read test AS

SELECT *

FROM apex 040200.wwv_flow_page plugs
WHERE rownum = 1;

SQL> explain plan for
2 select * from read test;

PLAN TABLE OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
| 0 | SELECT STATEMENT | | 1| 214K| 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| READ_TEST | 1| 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13
Resc: 2.0002 Resc _io: 2.0000 Resc_cpu: 7271
Resp: 2.0002 Resp io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002
Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111
Resp: 2.0003 Resp io: 2.0000 Resc_cpu: 11111

\\\\\\\’

Aliasing and Fully Qualified Names

= When you do not use fully qualified names Oracle must do the work for you
= You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id
FROM servers s, serv_inst i
WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr id
FROM uwclass.servers s, uwclass.serv_inst i
WHERE s.srvr id = i.srvr_ id;

\\\\\\\’

a1
»

Implicit Casts

= Code that does not correctly define data types will either fail to run or run very
Inefficiently

The following example shows both the correct way and the incorrect way to
work with dates. The correct way Is to perform an explicit cast

SQL> create table t (
2 datecol date);

Table created.

SQL> insert into t wvalues ('01-JAN-2016"') ;

1l row created.

SQL> insert into t values (TO_DATE('0l1-JAN-2016'))

1l row created.

\\\\\\\’

a1
~

Jonathan Lewis' Rules for Hints

1. Don't
2. If you must use hints, then assume you've used them incorrectly

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is going to do
the wrong thing

Because of (2) above; you've been lucky so far, but the patch/upgrade lets you
discover your mistake

4. Every time you apply some DDL to an object that appears in a piece of hinted SQL
assume that the hinted SQL is going to do the wrong thing

Because of (2) above; you've been lucky so far, but the structural change lets you
discover your mistake

\\\\\\\’

o1
oo

APPEND Hint

= The APPEND hint enables direct-path INSERT Iif the database Is running In
serial mode. The database is in serial mode If you are not using Enterprise

Edition. Conventional INSERT is the default in serial mode, and direct-path
INSERT Is the default in parallel mode

= |n direct-path INSERT data is appended above the high-water mark potentially
Improving performance

INSERT /*+ APPEND */ INTO t
SELECT * FROM servers;

\\\\\\\’

al
©

APPEND_VALUES Hint

Use this new 12c¢ hint

Instructs the optimizer to
use direct-path INSERT
with the VALUES clause

If you do not specify this
hint, then conventional

INSERT Is used

This hint is only
supported with the
VALUES clause of the
INSERT statement

If you specify it with an

Insert that uses the
subquery syntax it is
ignored

SQL> EXPLAIN PLAN FOR
2 INSERT INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms_ xplan.display) ;

SQL> EXPLAIN PLAN FOR
2 INSERT /*+ APPEND VALUES */ INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms xplan.display) ;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	INSERT STATEMENT		1	100	1 (0)] 00:00:01	
1	LOAD AS SELECT	T				
2	BULK BINDS GET					I

\\\\\\\’

(o2}
o

CHANGE_DUPKEY_ ERROR_INDEX Hint

= Use this hint to unambiguously identify a unique key violation for a specified
set of columns or for a specified index

= When a unique key violation occurs for the specified index, an ORA-38911
error Is reported instead of an ORA-00001

INSERT /*+ CHANGE_DUPKEY_ERROR_INDEX (T, TESTCOL) */ INTO t
(testcol)

VALUES

(lAl) ,.

\\\\\\\’

(o2}
=

IGNORE_ON_DUPKEY_INDEX Hint

= This hint applies only to single-table INSERT operations

» |t causes the statement to ignore a unique key violation for a specified set of
columns or for a specified index

= When a unique key violation is encountered, a row-level rollback occurs and
execution resumes with the next input row

= |f you specify this hint when inserting data with DML error logging enabled,
then the unique key violation is not logged and does not cause statement
termination

INSERT /*+ IGNORE ROW_ON DUPKEY INDEX (T, UC_T_TESTCOL)) */ INTO t
(testcol)
VALUES

(1)

\\\\\\\’

(o))
N

DBMS_ERRLOG g

abort and rollback

Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are not

supported

LOG ERRORS effectively it turns
array processing into single row

processing, so it adds an
expense at the moment of

Inserting, even though it saves
you the overhead of an array

rollback if a duplicate gets
Into the data (Jonathan Lewis)

CREATE TABLE t AS
SELECT *

FROM all tables
WHERE 1=2;

ALTER TABLE t

ADD CONSTRAINT pk_t

PRIMARY KEY (owner, table name)
USING INDEX;

ALTER TABLE t
ADD CONSTRAINT cc_t
CHECK (blocks < 11);

INSERT /*+ APPEND */ INTO t
SELECT *
FROM all tables;

= Provides a procedure that enables creating an error logging table so that DML
operations can continue after encountering errors rather than performing an

\\\\\\\’

(o))
w

DBMS_ERRLOG ¢

exec

dbms errlog.create error log('T');

desc err$ t

INSERT /*+ APPEND */ INTO t
SELECT *

FROM all tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT (*) FROM t;
COMMIT;

SELECT COUNT (*) FROM t;
SELECT COUNT (*) FROM err$ t;
set linesize 121

col table name format a30

col blocks format a7
col ora_err_mesg$ format a60

SELECT ora_err mesg$, table name,

blocks
FROM err$_t;

\\\\\\\’

64

DBMS STATS: Statistics

= System Stats

* Fixed Object Stats
= Dictionary Stats

= Set stats for new partitions SQL> SELECT * FROM sys.aux_stats$;

SQL> exec dbms_stats.gather system stats('INTERVAL', 15);

so that when inserts take SNAME PNAME PVALL PVAL2
place the optimizer knows SYSSTATS INFO STATUS COMPLETED
what you are inserting SYSSTATS INFO DSTART 05-27-2015 09:45
SYSSTATS INFO DSTOP 05-27-2015 09:51
SYSSTATS INFO FLAGS 0
SYSSTATS MAIN CPUSPEEDNW 3010
SYSSTATS MAIN IOSEEKTIM 10
SYSSTATS MAIN IOTFRSPEED 4096
SYSSTATS MAIN SREADTIM 3.862
SYSSTATS MAIN MREADTIM 1.362
SYSSTATS MAIN CPUSPEED 2854
SYSSTATS MAIN MBRC 17

SYSSTATS MAIN MAXTHR
SYSSTATS MAIN SLAVETHR

\\\\\\\’

(o2}
a1

DBMS _ STATS: Processing Rate

Processing Rate collection is new as of version 12cR1

Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

Processing rates are collected manually

SQL> exec dbms_stats.gather processing rate('START', 20);

SQL> SELECT operation name, manual value, calibration value, default value
2 FROM vSoptimizer processing rate
3 ORDER BY 1;

\\\\\\\’

o2}
»

OPERATION NAME

CPU

CPU_ACCESS

CPU_AGGR
CPU_BYTES PER SEC
CPU_FILTER

CPU_GBY
CPU_HASH_JOIN
CPU_IMC BYTES PER SEC
CPU_IMC ROWS PER SEC
CPU_JOIN

CPU_NL_JOIN
CPU_RANDOM ACCESS
CPU_ROWS_PER SEC
CPU_SEQUENTIAL ACCESS
CPU_SM_JOIN

CPU_SORT

HASH

I0

IO ACCESS

IO BYTES PER SEC

IO IMC_ACCESS

IO _RANDOM ACCESS

IO _ROWS_PER SEC

IO SEQUENTIAL ACCESS
MEMCMP

MEMCPY

DBMS _ STATS: Processing Rate e

MANUAL VAL CALIBRATIO DEFAULT VA

2000000.00

200.

200

200

200

200

1000000

1000

SQL> exec dbms_stats.set processing rate('IO', 100);

00000

.00000
200.
1000000.

00000
00000

.00000
200.
200.

00000
00000

.00000
200.
200.

00000
00000

.00000
1000.
200.

00000
00000

.00000
200.
500.

00000
00000

.00000

\\\\\\\’

67

INSERT Statement Most Common Error

* |f you do not name columns DDL can break your statement and not doing so
will use a less efficient code path

INSERT INTO <table_name>

VALUES
(<comma separated value list>);

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state name VARCHARZ2 (30) ,
city name VARCHARZ2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('"NY', 'New York');

INSERT INTO state
VALUES
('NY', 'New York');

\\\\\\\’

(o2}
(oe]

.25

Wrap Up

Conclusion

* How comfortable are you with your knowledge of UPDATE and DELETE
statements?

* The most important principle in INSERT statements, and everything else In
Oracle is "do the least work"
= Minimize CPU utilization
Minimize 1/O
= Take the load off the storage array
= Off the HBA cards
= Off the SAN switch
= Off the Fibre
Minimize network utilization
= Bandwidth
= Round Trips
Minimize your memory footprint

\\\\\\\’

~
o

*

ERROR at line 1:
ORA-00028: your session has been killed

Thank You

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganlig

twitter: @meta7solutions

