
Effective PL/SQL

Thomas Kyte

http://asktom.oracle.com/

Agenda

• Why PL/SQL?

• Write as little as you can

• Use Packages

• Use Static SQL

• Bulk processing

• Implicit or Explicit?

• Beware of some features

• Things to definitely do

Why PL/SQL

Why Use PL/SQL

• It is a ‘real’ language

– It is not a scripting language

– It is not a ‘toy’, it is used to code ‘real’ things

• It is the API to the database

It is the most efficient language for data

manipulation

• If your goal is to procedurally process data (after

ensuring a single SQL statement cannot do your

work!) then PL/SQL is simply the most productive

language to do so

It is the most efficient language for data

manipulation

• SQL datatypes are PL/SQL datatypes

• Tight coupling between the two languages

• Code short cuts (implicit cursors)

• Protected from many database changes

Create or replace procedure

process_data(p_inputs in varchar2)

As

Begin

 For x in (select * from emp

 where ename like p_inputs)

 Loop

 Process(X);

 End loop

End;

It is the most efficient language for data

manipulation

static PreparedStatement

pstmt = null;

public static void

process_data

(Connection conn, String inputs)

throws Exception

{

int empno;

String ename;

String job;

int mgr;

String hiredate;

int sal;

int comm;

int deptno;

if (pstmt == null)

 pstmt = conn.prepareStatement

 ("select * from emp " +

 "where ename like ? ");

pstmt.setString(1, inputs);

ResultSet rset =

 pstmt.executeQuery();

……

while(rset.next())

{

 empno = rset.getInt(1);

 ename = rset.getString(2);

 job = rset.getString(3);

 mgr = rset.getInt(4);

 hiredate = rset.getString(5);

 sal = rset.getInt(6);

 comm = rset.getInt(7);

 deptno = rset.getInt(8);

 process(empno, ename, job, mgr,

 hiredate, sal, comm, deptno);

}

rset.close();

Pstmt.close();

}

• SQL datatypes are not Java types (consider

number(38) issues…)

• No coupling between the two languages,

entirely procedural (what about SQLJ?)

• No code short cuts (statement caching)

• Not protected from many database changes

(and no dependencies either!)

PL/SQL epitomizes portability and reusability

• It is the most advanced portable language I’ve ever
seen
– It is callable from every other language out there

– Anything that can connect to the database can use and reuse
it

• Sure – there are things like SOA and Services that let
X call Y
– But these introduce their own level complexities

– And if your service is a database server, it would be best to
be written in the database

• If you can connect to the database – you can use and
reuse PL/SQL from anything

Many mistakes made in other languages using the

database are avoided

• Bind Variables

– If you use static SQL in PL/SQL it is impossible to not use bind

variables correctly.

– You have to use cumbersome dynamic SQL to do it wrong.

• Parse Once, Execute many

– PL/SQL does statement caching

– You have to either configure and enable its use in other languages

or

– Do it your self (refer back to java code)

• Schema Changes are safer

– Alter table t modify c1 varchar2(255);

– We can find all uses of T (I didn’t know you were using that, sorry..)

– We can make the change without having to change code

However

• As with any language you can

– Write really good code

– Write really average code

– Write really really really bad code

• You can make the same mistakes with PL/SQL that

you can with every other language

– By not understanding the language

– By not understanding some implementation details

– By not understanding SQL

– By not designing

– And so on…

Write as Little

as you can

Code…

• Write as much code:

– As you have to

– But as little as you can…

• Think in SETS

• Use (really use – not just ‘use’) SQL

Begin

 For x in (select * from table@remote_db)

 Loop

 Insert into table (c1, c2, …)

 values (x.c1, x.c2,…);

 End loop;

End;

Insert into table (c1,c2,…)

select c1,c2,…. From table@remote_db

Insert into table (c1,c2,…)

select c1,c2,…. From table@remote_db

LOG ERRORS (some_variable)

REJECT LIMIT UNLIMITED;

… code to handle errors

 for tag some_variable …

Use PL/SQL constructs only when SQL cannot do it

• Another coding ‘technique’ I see frequently:

• The developer did not want to “burden” the database

with a join

For a in (select * from t1)

Loop

 For b in (select * from t2

 where t2.key = a.key)

 Loop

 For c in (select * from t3

 where t3.key = b.key)

 Loop

 …

More Code = More Bugs

Less Code = Less Bugs

• This code speaks for itself.

• So does this.

• Always look at the procedural code and ask yourself

“is there a set based way to do this algorithm”

– For example …

if-at-first-you-dont-succeed.html
A-Confusing-SELECTion.aspx.htm

 insert into t (....)

 select EMPNO, STATUS_DATE,

 from t1, t2, t3, t4,

 where;

 loop

 delete from t

 where (EMPNO,STATUS_DATE)

 in (select EMPNO,

 min(STATUS_DATE)

 from t

 group by EMPNO

 having count(1) > 1);

 exit when sql%rowcount = 0;

 end loop;

For any set of records with

more than one EMPNO,

remove rows with the oldest

STATUS_DATE.

Additionally – If the last set of

EMPNO records all have the

same STATUS_DATE, remove

them all.

More Code = More Bugs

Less Code = Less Bugs

EMPNO STATUS_DATE

------- ------------

1 01-jan-2009

1 15-jun-2009

1 01-sep-2009

…

1000 01-feb-2009

1000 22-aug-2009

1000 10-oct-2009

1000 10-oct-2009 (1,01-jan-2009,3) (1001,01-feb-2009,4)

EMPNO STATUS_DATE

------- ------------

1 01-jan-2009

1 15-jun-2009

1 01-sep-2009

…

1000 01-feb-2009

1000 22-aug-2009

1000 10-oct-2009

1000 10-oct-2009

EMPNO STATUS_DATE

------- ------------

1 01-jan-2009

1 15-jun-2009

1 01-sep-2009

…

1000 01-feb-2009

1000 22-aug-2009

1000 10-oct-2009

1000 10-oct-2009 (1,15-jun-2009,2) (1001,22-aug-2009,3)

EMPNO STATUS_DATE

------- ------------

1 01-jan-2009

1 15-jun-2009

1 01-sep-2009

…

1000 01-feb-2009

1000 22-aug-2009

1000 10-oct-2009

1000 10-oct-2009 (1001,22-aug-2009,2)

EMPNO STATUS_DATE

------- ------------

1 01-sep-2009

…

 insert /* APPEND */ into t (....)

 select EMPNO, STATUS_DATE,

 from (select EMPNO, STATUS_DATE, ,

 max(STATUS_DATE)

 OVER (partition by EMPNO) max_sd,

 count(EMPNO)

 OVER (partition by EMPNO,STATUS_DATE) cnt

 from t1, t2, t3, t4, …

 where …)

 where STATUS_DATE = max_sd

 and cnt = 1;

More Code = More Bugs

Less Code = Less Bugs

• This was a data warehouse load (load 2-3-4 times the data you want,

then delete? Ouch)

• It was wrong – procedural code is no easier to understand than set based

code, documentation is key

 /* Load table t using history tables. History tables have

 multiple records per employee. We need to keep the

 history records for each employee that have the maximum

 status date for that employee. We do that by computing

 the max(status_date) for each employee (partition by EMPNO

 finding max(status_date) and keeping only the records such

 that the status_date for that record = max(status_date)

 for all records with same empno */

insert /* APPEND */ into t (....)

 select EMPNO, STATUS_DATE,

 from (select EMPNO, STATUS_DATE, ,

 max(STATUS_DATE)

 OVER (partition by EMPNO) max_sd

 from t1, t2, t3, t4, …

 where …)

 where STATUS_DATE = max_sd;

More Code = More Bugs

Less Code = Less Bugs

 /* Load table t using history tables. History tables have

 multiple records per employee. We need to keep the

 history records for each employee that have the maximum

 status date for that employee. We do that by numbering

 each history record by empno, keeping only the records such

 that it is the first record for a EMPNO after sorting by

 status_date desc. REALIZE: this is not deterministic if

 there are two status_dates that are the same for a given

 employee! */

insert /* APPEND */ into t (....)

 select EMPNO, STATUS_DATE,

 from (select EMPNO, STATUS_DATE, ,

 row_number() OVER (partition by EMPNO

 order by STATUS_DATE desc) rn

 from t1, t2, t3, t4, …

 where …)

 where rn=1;

More Code = More Bugs

Less Code = Less Bugs

“Here is a last bit of advice on writing as little as possible: When you are

writing code, make sure your routines (methods, procedures, functions,

or whatever you want to call them) fit on a screen. You should be able to

see the logic from start to finish on your monitor. Buy the biggest

monitor you can, and make the routines fit on your screen. This rule

forces you to think modularly, so you break up the code into bite-sized

snippets that are more easily understood”

Use Packages

They break the dependency chain

• Most relevant in Oracle Database 10g Release 2 and

before:

ops$tkyte%ORA10GR2> create or replace procedure p1 as begin null; end;

ops$tkyte%ORA10GR2> create or replace procedure p2 as begin p1; end;

OBJECT_NAME STATUS TO_CHAR(LAST_DD

------------------------------ ------- ---------------

P1 VALID 04-oct 12:15:54

P2 VALID 04-oct 12:15:54

ops$tkyte%ORA10GR2> create or replace procedure p1 as begin /* updated */ null; end;

OBJECT_NAME STATUS TO_CHAR(LAST_DD

------------------------------ ------- ---------------

P1 VALID 04-oct 12:15:58

P2 INVALID 04-oct 12:15:54

They increase your namespace

• You can have only one procedure P in a schema
– What about EBR?

– Killer Feature of 11g Release 2

• With packages, you can have as many procedure P’s
as you need
– Less chance of developer X using the same ‘name’ as

developer Y since only package names would clash

• A single package has many procedures/functions
– Reduces dictionary “clutter”

– Organizes things, related code goes together

– Promotes modularity

They support overloading

• A feature which is viewed as

– Positive by some

– Negative by others

• Overloading can be very useful in API packages

– 259 out of 728 ‘SYS’ packages employ this technique

They support encapsulation

• Helps live up to the “fit on a screen” rule
– Many small subroutines that are no use outside of the

package

– Hide them in the package body, no one can see them

– Reduces clutter in the dictionary

• Allows you to group related functionality together
– Makes it obvious what pieces of code are to be used together

• They support elaboration code
– When package is first invoked, complex initialization code

may be executed

Use Static SQL

Static SQL is checked at compile time

• You know the SQL will (probably) execute

– It is syntactically correct

– It could still raise an error (divide by zero, conversion error,

etc)

– It might be semantically incorrect, but that is a bug in your

logic, not a criticism of static SQL

PL/SQL understands the dictionary

• It will create record types for you

• It will allow you to define variables based on the

database types

• The compiler does more work, so you don’t have to.

One word - dependencies

• All referenced objects – tables, views, other bits of
code, etc – are right there in the dictionary.

• No more “Oh sorry, I didn’t know you were using that”

• If something changes – we know right away if
something is broken
– Grants – lose one that you need, code will stay invalid

– Drop column – drop one that you reference, code will stay
invalid

– Modify length of column – if you reference that, code will
recompile with new size.

Static SQL makes parse once, execute many a

reality

• Dynamic SQL makes it easy to lose out on this benefit.

• With DBMS_SQL, you have to cache the ‘cursor’ yourself and
make sure you use it over and over (eg: do not call
dbms_sql.close() until you have to)

• With native dynamic SQL, you need to make sure you use the
same SQL text over and over to cache statements

– And if you are doing that, why did you use dynamic SQL again?

– Different in 9i and before than 10g and later

• Impossible to be SQL Injected with static SQL! Far too easy to
be SQL Injected with dynamic SQL.

Dynamic SQL – when to use then?

• Dynamic SQL is something you want to use when

static SQL is no longer practical—when you would be

writing hundreds or thousands of lines of code, and

can replace it with a very small bit of safe (sql

injection) dynamic SQL.

• When you’ve shown that using static SQL would not

be practical – that is, it is never your first choice.

Bulk Up

Bulk Processing Defined:

• A method to bother the database less often

• A method to reduce round trips (even from PL/SQL to

SQL – there is a ‘round trip’ involved

• A method to utilize fewer resources in general

• A method to maintain data structures in better shape

• You get some data (more than a row), process it, and

send it all back (to update/insert/delete).

Bulk Processing

• You need to do it when…

– You retrieve data from the database

– AND you send it back to the database

• You need NOT do it when…

– You retrieve data from the database

– <this space left intentionally blank>

– For example…

Bulk Processing

For x in (select * from t where …)

Loop

 process(x);

 update t set … where …;

End loop;

For x in (select * from t where …)

Loop

 dbms_output.put_line(… t.x …);

End loop;

• You need to do it when… THIS IS BAD CODE

• Implicit array fetch for select

• Not so for update… Details on next slide

• You need NOT do it when… THIS IS OK CODE

• Implicit array fetch for select

• No going back to database

Bulk Processing

create or replace procedure bulk

as

 type ridArray is table of rowid;

 type onameArray is table

 of t.object_name%type;

 cursor c is select rowid rid, object_name

 from t t_bulk;

 l_rids ridArray;

 l_onames onameArray;

 N number := 100;

begin

 open c;

 loop

 fetch c bulk collect

 into l_rids, l_onames limit N;

 for i in 1 .. l_rids.count

 loop

 l_onames(i) := substr(l_onames(i),2)

 ||substr(l_onames(i),1,1);

 end loop;

 forall i in 1 .. l_rids.count

 update t

 set object_name = l_onames(i)

 where rowid = l_rids(i);

 exit when c%notfound;

 end loop;

 close c;

end;

create or replace procedure slow_by_slow

as

begin

 for x in (select rowid rid, object_name

 from t t_slow_by_slow)

 loop

 x.object_name := substr(x.object_name,2)

 ||substr(x.object_name,1,1);

 update t

 set object_name = x.object_name

 where rowid = x.rid;

 end loop;

end;

Bulk Processing

SELECT ROWID RID, OBJECT_NAME FROM T T_BULK

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 721 0.17 0.17 0 22582 0 71825

**

UPDATE T SET OBJECT_NAME = :B1 WHERE ROWID = :B2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 719 12.83 13.77 0 71853 74185 71825

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 720 12.83 13.77 0 71853 74185 71825

SELECT ROWID RID, OBJECT_NAME FROM T T_SLOW_BY_SLOW

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 721 0.17 0.17 0 22582 0 71825

**

UPDATE T SET OBJECT_NAME = :B2 WHERE ROWID = :B1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 71824 21.25 22.25 0 71836 73950 71824

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71825 21.25 22.25 0 71836 73950 71824

But of course, the bulkier the better…

SELECT ROWID RID, OBJECT_NAME FROM T T_BULK

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 721 0.17 0.17 0 22582 0 71825

**

UPDATE T SET OBJECT_NAME = :B1 WHERE ROWID = :B2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 719 12.83 13.77 0 71853 74185 71825

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 720 12.83 13.77 0 71853 74185 71825

update t set object_name = substr(object_name,2) || substr(object_name,1,1)

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 1.30 1.44 0 2166 75736 71825

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 1.30 1.44 0 2166 75736 71825

Lots less code too! (dml error logging if you need)

Returning Data

To return data to a client program

• Either

– Simple, formal OUT parameters

– Ref cursor for all result sets

• Do not run a query

– To populate a collection

– To return collection to client

• Just run the query (open CURSOR for SQL_STMT)

– Ease of programming, everything can handle a cursor

– Flexibility (client decides how many rows to deal with, less memory

intensive)

– Performance – client might never get to the last row (probably won’t)

Implicit versus

Explicit

Implicit versus Explicit

• Implicit

– With this type of cursor, PL/SQL does most of the work for

you. You don’t have to open close, declare, or fetch from an

implicit cursor.

• Explicit

– With this type of cursor, you do all of the work. You must

open, close, fetch, and control an explicit cursor completely.

For x in (select * from t where …)

Loop

 …

End loop;

Declare

 cursor c is select * from t where …;

 l_rec c%rowtype;

Open c;

Loop

 fetch c into l_rec;

 exit when c%notfound;

 …

End loop;

Close c;

Implicit versus Explicit

• There is a myth that explicit cursors are superior in performance

and usability to implicit cursors.

• The opposite is generally true

– Implicit cursors have implicit array fetching, Explicit cursors do not

– Implicit cursors have many of their operations hidden in the PL/SQL

runtime (C code) as opposed to explicit cursors being coded by you

in PL/SQL code.

– Implicit cursors are safer than explicit cursors code-wise

• Select into checks (at least and at most one row)

• Cursors opened/closed for you – implicitly – no ‘leaks’

• Both implicit and explicit cursors however are cached by PL/SQL

– But ref cursors are not…

Single Row Processing

• Implicit

• Explicit

• These two bits of

code do the same

thing. Which is

more efficient?

Select … INTO <plsql variables>

 from …

 where …;

Declare

 cursor c is select … from … where …;

Begin

 open c;

 fetch c into <plsql variables>;

 if (c%notfound) then

 raise no_data_found;

 end if;

 fetch c into <plsql variables>;

 if (c%found) then

 raise too_many_rows;

 end if;

 close c;

Single Row Processing

• This is a bug

• This is a bug I see a lot

• It is bad, but at least it
probably returns NULL

• This is a ‘worse’ bug

• This I see even more

• Combines the “do it yourself
join” with “do it the hard
way” to get the wrong
answer after a longer period
of time with lots more
development time

Function get_something return …

is

 cursor c is select … from … where …;

Begin

 open c;

 fetch c into <plsql variables>;

 close c;

 return plsql variables

--

Begin

 open c1;

 loop

 fetch c1 into l_data;

 exit when c1%notfound;

 open c2(l_data);

 fetch c2 into l_something_else;

 close c2;

 process(l_data, l_something_else);

 end loop;

 close c1;

Multi-Row Processing

• Which is “easier”?

• Which is more “bug

free”?

• Which one array

fetches for us?

• The explicit code

would be a lot more

intense if we wanted to

array fetch.

create or replace procedure implicit

as

begin

 for x in (select * from dept)

 loop

 null;

 end loop;

end;

--

create or replace procedure explicit

as

 l_rec dept%rowtype;

 cursor c is select * from dept;

begin

 open c;

 loop

 fetch c into l_rec;

 exit when c%notfound;

 end loop;

 close c;

end;

Multi-Row Processing

• This is nice too – all of
the benefits of implicit,
the factoring out of the
SQL usually attributed
to explicit cursors.

• This code in the tiny
font (to make it fit on
the screen) does the
same thing as the
above bit of code.
Which is more
efficient? Which is less
bug likely?

create or replace procedure implicit

As

 cursor c is select * from dept;

begin

 for x in C

 loop

 null;

 end loop;

end;

--
create or replace procedure explicit

as

 type array is table of dept%rowtype;

 l_rec array;

 n number := 2;

 cursor c is select * from dept;

begin

 open c;

 loop

 fetch c bulk collect into l_rec limit N;

 for i in 1 .. l_rec.count

 loop

 null;

 end loop;

 exit when c%notfound;

 end loop;

 close c;

end;

Multi-Row Processing

• So, is there ever a time

to use explicit cursors?

– Never say Never

– Never say Always

– I always say

• Bulk forall processing

probably mandates

explicit cursors

• Ref Cursors mandate

explicit cursors

create or replace procedure bulk

as

 type ridArray is table of rowid;

 type onameArray is table of t.object_name%type;

 cursor c is select rowid rid, object_name

 from t t_bulk;

 l_rids ridArray;

 l_onames onameArray;

 N number := 100;

begin

 open c;

 loop

 fetch c bulk collect

 into l_rids, l_onames limit N;

 for i in 1 .. l_rids.count

 loop

 l_onames(i) := substr(l_onames(i),2)

 ||substr(l_onames(i),1,1);

 end loop;

 forall i in 1 .. l_rids.count

 update t

 set object_name = l_onames(i)

 where rowid = l_rids(i);

 exit when c%notfound;

 end loop;

 close c;

end;

Beware of…

Beware – When others

•When others

•Autonomous Transactions

•Triggers

Things to do…

“Instrument your code. Make it debuggable. Make it so that tracing the

code is easy. Identify yourself with DBMS_SESSION. Now

DBMS_MONITOR can trace you. Add copious calls to

DBMS_APPLICATION_INFO, now we can see who you are, what you

are doing and how long you’ve been doing it. Add calls to a logging

package (for example http://log4plsql.sourceforge.net/) to enable remote

debugging of your code. Use conditional compilation to enable extra

intensive debug code to be ‘deployed’ to production.”

“Use the tools – SQL Developer, built in source code

debugging. Hierarchical profiling – for performance. Tracing

tools to see how your SQL is doing. ASH/AWR reports.

PL/SCOPE. Learn the tools, then use them.”

“Always test things out – especially advice. I used to advise to use

BULK COLLECT for everything. That changed in Oracle Database

10g when they started implicitly doing that for us. There is advice on

the ‘internet’ to never use implicit cursor – always use explicit. It is

wrong. If they suggest it is “faster” and you cannot see it being

“faster”, question the advice.”

“Question Authority, Ask Questions”

